Kocman, V., Rucklidge, J. C., O’Brien. R. J. \& Santo, W. (1971). Chem. Commun. pp. 1340-1340.
Neugebauer, W., Kos, A. J. \& Schleyer, P. van R. (1982). J. Organomet. Chem. 228, 107-117.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rausch, M. D. \& Klemann, L. P. (1971). Chem. Commun. pp. 354354.

Sonogashira, K. \& Hagihara, N. (1966). Bull. Chem. Soc. Jpn, 39, 1178-1182.

Acta Cryst. (1996). C52, 2425-2427

Bis(1,2-di-4-pyridylethane- $N: N^{\prime}$)cadmium(II) Tetracyanonickelate(II) m-Xylene Solvate

Blal Güneş, ${ }^{a *}$ Hüseyin Soylu, ${ }^{a}$ Süheyla Özbey, ${ }^{b}$ Yüksel Tufan ${ }^{a}$ and Nurcan Karacan ${ }^{c}$
${ }^{a}$ Gazi University, Gazi Education Faculty, Physics Department, 06500 Besevler, Ankara, Turkey, ${ }^{\text {b }}$ Hacettepe University, Engineering Faculty, Physics Engineering Department, Beytepe, Ankara, Turkey, and ${ }^{\text {C Gazi University, }}$ Arts and Sciences Faculty, Chemistry Department, 06500 Besevler, Ankara, Turkey. E-mail: fozbey@eti.cc.hun.edu.tr
(Received 25 May 1995; accepted 26 April 1996)

Abstract

The title compound, bis(1,2-di-4-pyridylethane- $N: N^{\prime}$)cadmium(II) tetracyanonickelate(II) di-m-xylene solvate, $\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] .2 \mathrm{C}_{8} \mathrm{H}_{10}$, is represented by the general Hofmann-type clathrate formula Cd (Ligand) ${ }_{2} \mathrm{Ni}(\mathrm{CN})_{4} .2$ Guest, where Ligand is 1,2 -di-4-pyridylethane $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$ and Guest is m-xylene $\left(\mathrm{C}_{8} \mathrm{H}_{10}\right)$. It was seen that the structure of the title compound is of a new type and quite different from that of the Hofmann-type clathrates.

Comment

The title structure, (I), differs from that of the Hofmann-type clathrate. In the well known Hofmanntype clathrate, Ligand is either bidentate (having two donor atoms) or a monodentate pair (having one donor atom each) and results in a three-dimensional metal complex host structure accommodating the aromatic Guest molecule. Cd atoms are in an octahedral environment formed by coordination to four N atoms of the cyanide groups and two N atoms of the ligand molecules. However, in the new type of host structure presented here, each Cd atom is coordinated octahedrally
by four N atoms of the ligand molecules and two N atoms of the cyanide groups. The other two cyanide groups of the $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety have free nitrogen ends.

Of the six N atoms coordinating the Cd atom, two are from the cyanide groups, with a $\mathrm{Cd}-\mathrm{N} 3$ distance of 2.320 (4) \AA, and four are from pyridyl rings, with distances $\mathrm{Cd}-\mathrm{N} 22.422$ (5) and $\mathrm{Cd}-\mathrm{N} 12.345$ (5) \AA (Fig. 1). The Ni atom is coordinated to the four C atoms of the cyanide groups in a square plane, with distances Ni C13 1.852 (5) and $\mathrm{Ni}-\mathrm{C} 141.874$ (7) \AA. In the cyanide groups, the $\mathrm{C}-\mathrm{N}$ distances are 1.139 (7) (C13-N3) and $1.150(8) \AA(\mathrm{C} 14-\mathrm{N} 4)$, with angles $\mathrm{Cd}-\mathrm{N} 3-\mathrm{C} 13$ $164.2(5), \mathrm{Ni}-\mathrm{C} 14-\mathrm{N} 4179.1(5)$ and $\mathrm{Ni}-\mathrm{Cl} 3-\mathrm{N} 3$ $178.2(6)^{\circ}$. In the pyridyl rings, the distances $\mathrm{Nl}-$

Fig. 1. A perspective view of the molecular structure of the title complex with the atom-numbering scheme. The displacement ellipsoids are plotted at the 50% probability level and the displacement parameters of the Guest atoms were fixed at $5 \AA^{2}$ for clarity.

C1 1.329 (7), N1-C5 1.343 (7), C5-C5 1.341 (9) and C11-C12 1.38 (1) \AA are observed. The dipyridylethane molecule is not planar, the dihedral angle between the pyridyl rings being $86.1(2)^{\circ}$. The bond distances and angles of the host atoms are similar to those observed for the Hofmann-type clathrates (Hasegawa \& Iwamoto, 1988; Kuroda \& Sasaki, 1974).

In the m-xylene solvate molecule, the displacement parameters of the C21 and C22 atoms were very large. The distance between the C 21 and C 15 atoms is very short for a single $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{3}}$ bond length and so was restrained to be 1.34 (2) Å. As a result, the bond lengths, angles and displacement parameters of the Guest molecule are not reasonable, probably as a result of disorder, as is generally seen for Guest molecules. The disorder is caused by the repulsive force of the walls formed by the host atoms (Hashimoto, Kytazawa, Hasegawa \& Iwamoto, 1991; Yuge \& Iwamoto, 1992; Hasegawa \& Iwamoto, 1988; Nishikiori \& Iwamoto, 1983).

Experimental

Citric acid, cadmium chloride dihydrate, sodium hydroxide and all other chemicals used were employed without further purification. Potassium tetracyanonickelate hydrate, $\mathrm{K}_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, was prepared by conventional methods using potassium cyanide and nickel(II) chloride hexahydrate. $\mathrm{CdCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ were dissolved in 50 ml of $\mathrm{H}_{2} \mathrm{O} .1$, 2-Di-4-pyridylethane ($\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}$) was dissolved in 25 ml of acetone. The two solutions were mixed to form a creamy suspension. Citric acid and NaOH were then added and the mixture stirred vigorously. After filtration, a golden yellow solution was obtained. About 40 ml of the filtrate was transferred to a vial and neat m-xylene (20 ml) was placed over the solution. The vial was left at ambient temperature for approximately one month. Single crystals were formed at both the interface and bottom of the solution. The density D_{m} was measured by flotation in $\mathrm{CCl}_{4} / \mathrm{C}_{7} \mathrm{H}_{8}$ solution.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$.-
$2 \mathrm{C}_{8} \mathrm{H}_{10}$
$M_{r}=855.98$
Monoclinic
$P 2_{1} / c$
$a=10.510(1) \AA$
$b=10.438$ (1) \AA
$c=19.012(2) \AA$
$\beta=103.552$ (7) ${ }^{\circ}$
$V=2027.6(3) \AA^{3}$
$Z=2$
$D_{x}=1.402 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 24 reflections
$\theta=7-21^{\circ}$
$\mu=1.030 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic
$0.60 \times 0.32 \times 0.12 \mathrm{~mm}$
Golden yellow

2563 observed reflections
$[I>2 \sigma(I)]$
$R_{\mathrm{int}}=0.0182$

Absorption correction:
empirical via ψ scan
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.8554, \quad T_{\text {max }}=$ 0.9981

5291 measured reflections 5142 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.0542$
$w R\left(F^{2}\right)=0.1189$
$S=1.495$
3782 reflections
298 parameters
All H -atom parameters

$$
\begin{aligned}
& \text { refined } \\
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0258 P)^{2}\right. \\
&+4.9089 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
\end{aligned}
$$

$\theta_{\text {max }}=30.37^{\circ}$
$h=-14 \rightarrow 13$
$k=0 \rightarrow 13$
$l=0 \rightarrow 25$
3 standard reflections frequency: 120 min intensity decay: 2.3%

$$
x_{0}
$$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cd	0	0	0	0.0395 (2)
Ni	$-1 / 2$	0	0	0.0404 (2)
N1	0.0735 (4)	-0.1606 (5)	0.0862 (3)	0.042 (1)
N2	0.0478 (5)	0.1639 (5)	0.0926 (3)	0.048 (1)
N3	-0.2108 (4)	-0.0222 (5)	0.0163 (3)	0.050 (1)
N4	-0.4684 (6)	-0.1150 (7)	0.1491 (3)	0.077 (2)
C 1	-0.0091 (6)	-0.2405 (7)	0.1070 (4)	0.049 (2)
C2	0.0285 (6)	-0.3340 (6)	0.1589 (4)	0.052 (2)
C3	0.1585 (6)	-0.3500 (5)	0.1925 (3)	0.044 (1)
C4	0.2433 (6)	-0.2677 (8)	0.1697 (4)	0.058 (2)
C5	0.1999 (6)	-0.1774 (7)	0.1197 (4)	0.058 (2)
C6	0.2095 (8)	-0.4431 (8)	0.2521 (4)	0.057 (2)
C7	0.1207 (8)	0.4470 (7)	0.2616 (4)	0.057 (2)
C8	0.0937 (6)	0.3508 (6)	0.2016 (3)	0.050 (2)
C9	-0.0295 (7)	0.3138 (7)	0.1655 (4)	0.060 (2)
C10	-0.0484 (6)	0.2234 (7)	0.1131 (4)	0.055 (2)
C11	0.1674 (8)	0.200 (1)	0.1248 (5)	0.085 (3)
C12	0.1930 (8)	0.2899 (9)	0.1798 (5)	0.082 (3)
C13	-0.3210 (5)	-0.0157 (6)	0.0105 (3)	0.040 (3)
C14	-0.4814 (5)	-0.0716 (7)	0.0922 (4)	0.051 (2)
C15	0.386 (1)	-0.494 (2)	-0.1615 (6)	0.118 (3)
C16	0.431 (1)	-0.371 (2)	-0.1642 (9)	0.143 (5)
C17	0.425 (2)	-0.300 (1)	-0.108 (1)	0.157 (6)
C18	0.379 (1)	-0.344 (1)	-0.051 (1)	0.155 (6)
C19	0.335 (1)	-0.466 (1)	-0.0501 (7)	0.114 (3)
C20	0.3378 (9)	-0.544 (1)	-0.1044 (6)	0.109 (3)
C21	0.386 (2)	-0.570 (2)	-0.218 (1)	0.31 (3)
C22	0.716 (1)	0.512 (2)	-0.0142 (7)	0.195 (9)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cd}-\mathrm{N} 1$	$2.345(5)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.341(9)$
$\mathrm{Cd}-\mathrm{N} 2$	$2.422(5)$	$\mathrm{C} 6-\mathrm{C} 7^{\prime}$	$1.52(1)$
$\mathrm{Cd}-\mathrm{N} 3$	$2.320(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.496(9)$
$\mathrm{Ni}-\mathrm{C} 13$	$1.852(5)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.372(9)$
$\mathrm{N}-\mathrm{C} 14$	$1.874(7)$	$\mathrm{C} 8-\mathrm{C} 12$	$1.37(1)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.329(7)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.352(9)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.343(7)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.38(1)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.321(8)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.38(2)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.318(9)$	$\mathrm{C} 15-\mathrm{C} 20$	$1.40(1)$
$\mathrm{N} 3-\mathrm{Cl3}$	$1.139(7)$	$\mathrm{C} 15-\mathrm{C} 21$	$1.34(2)$
$\mathrm{N} 4-\mathrm{C} 14$	$1.150(8)$	$\mathrm{C} 17-\mathrm{C} 16$	$1.32(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.378(9)$	$\mathrm{C} 18-\mathrm{C} 17$	$1.35(2)$

C2-C3	1.375 (8)	C19-C18	1.36 (2)
C3-C6	1.495 (9)	C19-C22 ${ }^{\text {ii }}$	1.53 (2)
C4-C3	1.378 (9)	C20-C19	1.32 (1)
$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 2$	91.1 (2)	C9-C8-C7	124.0 (7)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	124.1 (6)	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Cd}$	120.3 (4)
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	123.7 (6)	C10-C9-C8	121.6 (7)
N2-C11-C12	122.7 (8)	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Cd}$	123.6 (5)
$\mathrm{N} 3-\mathrm{Cl} 3-\mathrm{Ni}$	178.2 (6)	$\mathrm{Cl1}-\mathrm{N} 2-\mathrm{C} 10$	116.2 (7)
N3-Cd-N1	90.2 (2)	$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 7$	121.4 (7)
$\mathrm{N} 3-\mathrm{Cd}-\mathrm{N} 2$	90.9 (2)	C12-C8-C9	114.5 (7)
$\mathrm{N} 4-\mathrm{Cl4-Ni}$	179.1 (5)	$\mathrm{C} 13-\mathrm{Ni}-\mathrm{Cl} 4$	89.0 (2)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{Cd}$	121.7 (4)	C13-N3-Cd	164.2 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	114.7 (6)	C16-C15-C20	124.5 (7)
C2-C3-C4	115.1 (6)	C16-C17-C18	123.4 (9)
C2-C3-C6	124.9 (6)	C17-C16-C15	114.3 (8)
C3-C2-C1	120.3 (6)	C17-C18-C19	121.1 (9)
C3-C6-C7 ${ }^{\text {i }}$	117.4 (6)	C18-C19-C22 ${ }^{\text {ii }}$	119.7 (8)
C4-C3-C6	120.0 (6)	C19-C20-C15	116.8 (7)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	124.3 (7)	C20-C19-C18	119.8 (8)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Cd}$	123.5 (4)	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 22{ }^{\text {ii }}$	120.5 (8)
C5-C4-C3	121.5 (6)	$\mathrm{C} 21-\mathrm{C} 15-\mathrm{C} 16$	117.4 (9)
C8-C7-C6 ${ }^{\text {iii }}$	115.4 (6)	$\mathrm{C} 21-\mathrm{C} 15-\mathrm{C} 20$	118.0 (9)
C8-C12-Cl1	121.2 (7)		
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-0.5 (9)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	176.5 (7)
$\mathrm{Ni}-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	-1.8(9)	C4-C3-C6-C7	-164.3 (7)
$\mathrm{Cd}-\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	-178.0 (5)	C5-C4-C3-C6	-175.6 (7)
$\mathrm{Cd}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	179.1 (6)	C6 ${ }^{\text {iii }}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	-126.8 (8)
$\mathrm{Cd}-\mathrm{N} 2-\mathrm{C} 11-\mathrm{Cl2}$	-177.1 (8)	C7-C8-C9-C10	-177.9 (7)
$\mathrm{Cd}-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	178.5 (6)	C7-C8-C12-Cl1	179.3 (9)

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x,-y,-z$; (iii) $x, 1+y, z$.

Data collection and cell refinement were performed using CAD-4-PC software (Enraf-Nonius, 1993). MolEN (Fair, 1990) was used for data reduction. Absorption coefficients were taken from International Tables for Crystallography (1992, Vol. C, Table 4.2.4.2). The structure was solved by Patterson heavy-atom methods using SHELXS86 (Sheldrick, 1990), which revealed the positions of the Cd and Ni atoms. Refinement was carried out by full-matrix least-squares methods using MolEN (Fair, 1990). H atoms, except those of the Guest molecule, were located from difference Fourier maps and refined isotropically. The H atoms of the Guest molecule were placed geometrically and refined by the riding method. The C15-C21 bond length was restrained to have a reasonable value. Positional disorder of the Guest atoms was not found. Molecular graphics were prepared using ORTEPII (Johnson, 1976) and the material for publication was prepared with SHELXL93 (Sheldrick, 1993).

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Referencc: KAll43). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Hasegawa, T. \& Iwamoto, T. (1988). J. Incl. Phenom. 6, 143-156.
Hashimoto, M., Kytazawa, T., Hasegawa, T. \& Iwamoto, T. (1991). J. Incl. Phenom. Mol. Rec. Chem. 11, 153-158.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kuroda, R. \& Sasaki, Y. (1974). Acta Cryst. B30, 687-690.
Nishikiori, S. \& Iwamoto, T. (1983). Bull. Chem. Soc. Jpn, 56, 32463252.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Yuge, H. \& Iwamoto, T. (1992). J. Incl. Phenom. Mol. Rec. Chem. 14, 217-235.

Acta Cryst. (1996). C52, 2427-2429

trans-Tetraaquabis $\left(N, N^{\prime}, N^{\prime \prime}\right.$-tricyanomelamine)cobalt(II) Hexahydrate

Brendan F. Abrahams,* Simon J. Egan,
Bernard F. Hoskins and Richard Robson

School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia. E-mail: abrahams@ rubens.its. unimelb.edu.au
(Received 14 December 1995; accepted 15 May 1996)

Abstract

The crystal structure of trans-tetraaquabis[1,3,5-triazine-2,4,6-tricarbodiimidato(1-)- N]cobalt(II) hexahydrate, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{9}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] .6 \mathrm{H}_{2} \mathrm{O}$, shows the cobalt(II) metal ion to be octahedrally coordinated by two trans doublyprotonated tricyanomelamine ligands and four water molecules. Hydrogen bonding between ligands yields a two-dimensional sheet structure.

Comment

Recent work has demonstrated that new extended networks may be constructed by linking metal centres through rod-like or slab-like ligands (Robson et al., 1992). The trianion of tricyanomelamine, tcmel ${ }^{3-}$, is a robust unit which is expected to offer a rich coordination chemistry given the number and variety of potential donor sites. Accordingly, the ligand was considered an ideal candidate for the construction of metal-ligand polymers. As part of a preliminary investigation of the ligand and its coordination chemistry, a cobalt(II) complex of the doubly-protonated ligand, $\mathrm{H}_{2} \mathrm{tcmel}^{-}$, was isolated as the $1: 2$ complex $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{tcmel}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$, (I).

